Extruded Polystyrene Insulation in Commercial Roof Systems

Presented by:

Herbert Slone
Registered Architect
Technical Manager, Commercial Insulation

Updated Oct. 2008
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of Owens Corning is prohibited.

©Owens Corning 2008
Learning Objectives

For XPS insulation in commercial roof systems:

1. Understand physical property comparison of various rigid foam plastic insulation products.

2. Understand ASTM C578 polystyrene product categories for specification writing.

3. Understand proper use of XPS in a variety of commercial roof insulation applications.

4. Understand building and energy code compliance using foam plastic roof insulation.
Closed Cell, Means What?

Closed Cell = Water Resistant

But, it does not mean the same thing for all types of foam plastic insulation.
Extruded Polystyrene (XPS)
Closed Cell

Cell Wall

Cell
Expanded Polystyrene (EPS), Closed Cell Beads with Open Voids

Cell

Cell Wall

Air Void Between Beads

Edge of Bead
Polyisocyanurate (Iso),
Open, Irregular Cells
Water Absorption Comparison
Always Compare Properties AND Methods

- XPS Method, ASTM C272, 24 Hour Immersed, No Drain
- Polyiso Method, ASTM C209, 2 Hour Immersed, 10 min Drain

Volume %
XPS Roof Insulation Systems

5 system types:
- Single-ply (insulation below membrane)
- Protected Membrane (PRMA, insulation above the membrane)
- Metal, Architectural Roofing
- Waterproofing/Plaza Deck
- Recover
Mechanical fasteners and stress plates hold the insulation and membrane in place.
Design considerations:

- Cover board, or slip sheet overlayment usually required.

- Cover board provides temperature protection from solar heat of dark membranes, and improves ASTM E 108 top surface flame spread (Class, A,B, C).

- Slip sheet separates chemically incompatible membranes from XPS, and improves ASTM E 108 flame spread.

- Fastener placement dictated by FM 60, 90 or 120 psf uplift test results.
XPS, Waterproofing/Plaza Deck Insulation

Waterproofing layer protected from environmental extremes and physical abuse. Creates traffic surface.

Pedestal System to Support Pavers
Design considerations:

- Design paver ballast in accordance with ANSI/SPRI RP-4-2002.
- Specify only low water absorbing XPS, ASTM C 578 Types, VI (40 psi), VII (60 psi), or V (100 psi).
- Specify water drainage channels on bottom of insulation layer to encourage water drainage off of membrane.
- Use paver pedestals or XPS “ribbed board” with water drainage channels under pavers.
- Use bond-breaking slipsheet over membrane where required.
XPS Roof Insulation Direct to Deck

Slip sheet or cover board may be required to achieve Class A rating.

Mechanically attached single-ply. Must use cover board if membrane fully adhered, or non-white.

XPS can be used direct to deck. No thermal barrier needed up to 10” thick w/o cover, 8” w/ cover board.
NRCA Green Roof Systems Manual, Section 6.4 Moisture Resistant Insulation:
“NRCA recommends XPS insulation be used as insulating material for green roof systems... minimum of 40 psi compressive strength for insulation used above or below green roof waterproofing membranes... NRCA recommends that a moisture resistant insulation always be installed above the membrane. This provides thermal protection for the membrane, reducing the overall temperature gradient that a membrane experiences.”

Insulated GREEN roofs are not possible without XPS.
“Cool Roofs” w/ XPS Reduce Urban Heat Island Effect

- XPS, direct to deck, slip sheet (no cover board), TPO membrane very cost effective “cool roof”.
- TPO’s reduce the amount of heat transferred into building.
- Reflective roofs can reduce peak cooling demand by 15%.
- Reflective roofs reduce thermal shock on the roof and increase system life cycle.
XPS, An Environmentally Responsible Choice

- Energy saving roof insulation.
- 15% Recycle content. Zero in-plant waste.
- Used with “cool roofs”, reducing urban heat island effect.
- HCFC blowing agent. 95% less ozone layer reduction over last generation CFC.
- HCFC completely gone with next generation blowing agent in 2010.
- Reusable. Saves costly tear-off and disposal over the building life cycle.
- Third party verification, SCS, GreenGuard, Energy Star